Картографические проекции виды

Картографической проекцией

называется математически определенный способ отображения поверхности земного эллипсоида на плоскости. Он устанавливает функциональную зависимость между географическими координатами точек поверхности земного эллипсоида и прямоугольными координатами этих точек на плоскости, т.е.

X= ƒ1 (B, L) и Y= ƒ2 (В, L).

Картографические проекции классифицируются по характеру искажений, по виду вспомогательной поверхности, по виду нормальной сетки (меридианов и параллелей), по ориентировке вспомогательной поверхности относительно полярной оси и др.

По характеру искажений выделяют следующие проекции:

1. равноугольные, которые передают величину углов без искажения и, следовательно, не искажают формы бесконечно малых фигур, а масштаб длин в любой точке остается одинаковым по всем направ­лениям. В таких проекциях эллипсы искажений изображаются окружностями разного радиуса (рис. 2 а).

2. равновеликие, в которых отсутствуют искажения площадей, т.е. сохраняются соотношения площадей участков на карте и эллипсоиде, однако сильно искажаются формы бесконечно малых фигур и масштабы длин по разным направлениям. Бесконечно малые кружки в разных точках таких проекций изображаются равноплощадными эллипсами, имеющими разную вытянутость (рис. 2 б).

3. произвольные, в которых имеются в разных соотношениях искажения и углов и площадей. Среди них выделяются равнопромежуточные, в которых масштаб длин по одному из главных направлений (меридианам или параллелям) остается постоянным, т.е. сохраняется длинна одной из осей эллипса (рис. 2 в).

По виду вспомогательной поверхности для проектирования выделяют следующие проекции:

1. Азимутальные, в которых поверхность земного эллипсоида переносится на касательную или секущую его плоскость.

2. Цилиндрические, в которых вспомогательной поверхностью служит боковая поверхность цилиндра, касательная к эллипсоиду или секущая его.

3. Конические, в которых поверхность эллипсоида переносится на боковую поверхность конуса, касательную к эллипсоиду или секущую его.

По ориентировке вспомогательной поверхности относительно полярной оси проекции подразделяются на:

а) нормальные,

в которых ось вспомогательной фигуры совпадает с осью земного эллипсоида; в азимутальных проекциях плоскость перпендикулярна к нормали, совпадающей с полярной осью;

б) поперечные, в которых ось вспомогательной поверхности лежит в плоскости земного экватора; в азимутальных проекциях нормаль вспомогательной плоскости лежит в экваториальной плоскости;

в) косые, в которых ось вспомогательной поверхности фигуры совпадает с нормалью, находящейся между земной осью и плоскостью экватора; в азимутальных проекциях плоскость к этой нормали перпендикулярна.

На рис.3 показаны различные положения плоскости, касательной к поверхности земного эллипсоида.

Классификация проекций по виду нормальной сетки (меридианов и параллелей) является одной из основных. По этому признаку выделяется восемь классов проекций.

а б в

Рис. 3. Виды проекций по ориентировке

вспомогательной поверхности относительно полярной оси.

а-нормальная; б-поперечная; в-косая.

1. Азимутальные. В нормальных азимутальных проекциях меридианы изображаются прямыми, сходящимися в одну точку (полюс) под углами, равными разности их долгот, а параллели — концентрическими окружностями, проведенными с общего центра (полюса). В косых и большинства поперечных азимутальных проекциях меридианы, исключая средний, и параллели представляют кривые линии. Экватор в поперечных проекциях — прямая линия.

2. Конические. В нормальных конических проекциях меридианы изображаются прямыми, сходящимися в одной точке под углами, пропорциональными соответствующим разностям долгот, а параллели — дугами концентрических окружностей с центром в точке схода меридианов. В косых и поперечных — параллели и меридианы, исключая средний, — кривые линии.

3. Цилиндрические. В нормальных цилиндрических проекциях меридианы изображаются равноотстоящими параллельными прямыми, а параллели — перпендикулярными к ним прямыми, в общем случае не равноотстоящими. У косых и поперечных проекциях параллели и меридианы, исключая средний, имеют вид кривых линий.

4. Поликонические.

При построении этих проекций сеть меридианов и параллелей переносится на несколько конусов, каждый из которых развертывается в плоскость. Параллели, исключая экватор, изображаются дугами эксцентрических окружностей, центры которых лежат на продолжении среднего меридиана, имеющего вид прямой линии. Остальные меридианы — кривые, симметричные к среднему меридиану.

5. Псевдоазимутальные, параллели которых представляют концентрические окружности, а меридианы — кривые, сходящиеся в точке полюса и симметричные относительно одного или двух прямолинейных меридианов.

6. Псевдоконические, в которых параллели представляют собой дуги концентрических окружностей, а меридианы — кривые линии, симметричные относительно среднего прямолинейного меридиана, который может не изображаться.

7. Псевдоцилиндрические, в которых параллели изображаются параллельными прямыми, а меридианы — кривыми, симметричными относительно среднего прямолинейного меридиана, который может не изображаться.

8. Круговые, меридианы которых, исключая средний, и параллели, исключая экватор, изображаются дугами эксцентрических окружностей. Средний меридиан и экватор — прямые.

  1. Равноугольная поперечно-цилиндрическая проекция Гаусса – Крюгера. Зоны проекции. Порядок отсчета зон и колонн. Километровая сетка. Определение зоны листа топографической карты по оцифровке километровой сетки

Территория нашей страны имеет очень большие размеры. Это приводит при ее переносе на плоскость к значительным искажениям. По этой причине при построении топографических карт в России на плоскость переносят не всю территорию, а отдельные ее зоны, протяженность которых по долготе составляет 6°. Для переноса зон применяется поперечная цилиндрическая проекция Гаусса – Крюгера (в России используется с 1928 г.). Сущность проекции заключается в том, что вся земная поверхность изображается меридиональными зонами. Такая зона получается в результате деления земного шара меридианами через 6°.

На рис. 2.23 изображен касательный к эллипсоиду цилиндр, ось которого перпендикулярна малой оси эллипсоида.

При построении зоны на отдельный касательный цилиндр эллипсоид и цилиндр имеют общую линию касания, которая проходит по среднему меридиану зоны. При переходе на плоскость он не искажается и сохраняет свою длину. Этот меридиан, проходящий посередине зоны, называется осевым меридианом.

Когда зона спроектирована на поверхность цилиндра, он разрезается по образующим и развертывается в плоскость. При развертывании осевой меридиан изображается без искажения прямой РР′ и его принимают за ось X. Экватор ЕЕ′ также изображается прямой линией, перпендикулярной к осевому меридиану. Он принят за ось Y. Началом координат в каждой зоне служит пересечение осевого меридиана и экватора (рис. 2.24).

В результате, каждая зона представляет собой координатную систему, в которой положение любой точки определяется плоскими прямоугольными координатами X и Y.

Поверхность земного эллипсоида делится на 60 шестиградусных по долготе зон. Счет зон ведется от Гринвичского меридиана. Первая шестиградусная зона будет иметь значение 0°– 6°, вторая зона 6°–12° и т. д.

Принятая в России зона шириной 6° совпадает с колонной листов Государственной карты масштаба 1:1 000 000, но номер зоны не совпадает с номером колонны листов этой карты.

Счет зон ведется от Гринвичского меридиана, а счет колонн от меридиана 180°.

Как мы уже говорили, началом координат каждой зоны является точка пересечения экватора со средним (осевым) меридианом зоны, который изображается в проекции прямой линией и является осью абсцисс. Абсциссы считаются положительными к северу от экватора и отрицательными к югу. Осью ординат является экватор. Ординаты считаются положительными к востоку и отрицательными к западу от осевого меридиана (рис. 2.25).

Так как абсциссы отсчитываются от экватора к полюсам, то для территории России, расположенной в северном полушарии, они будут всегда положительными. Ординаты же в каждой зоне могут быть как положительными, так и отрицательными, в зависимости от того, где находится точка относительно осевого меридиана (на западе или востоке).

Чтобы удобно было делать вычисления, необходимо избавиться от отрицательных значений ординат в пределах каждой зоны. Кроме того, расстояние от осевого меридиана зоны до крайнего меридиана в самом широком месте зоны примерно равно 330 км (рис. 2.25). Чтобы делать расчеты, удобнее брать расстояние, равное круглому числу километров. С этой целью ось X условно отнесли к западу на 500 км. Таким образом, за начало координат в зоне принимают точку с координатами x = 0, y = 500 км. Поэтому ординаты точек, лежащих западнее осевого меридиана зоны, будут иметь значения меньше 500 км, а точек, лежащих восточнее осевого меридиана, – более 500 км.

Так как координаты точек повторяются в каждой из 60 зон, впереди ординаты Y указывают номер зоны.

Для нанесения точек по координатам и определения координат точек на топографических картах имеется прямоугольная сетка. Параллельно осям X и Y проводят линии через 1 или 2 км (взятых в масштабе карты), и поэтому их называют километровыми линиями, а сетку прямоугольных координат – километровой сеткой.



Source: StudFiles.net